[Research Seminar 2018.12.17]Linear time-varying regression with Copula-DCC-GARCH models for volatility
Speaker : Jong-Min Kim(Professor, University of Minnesota at Morris )
Abstract
This research provides a new linear time-varying regression with dynamic conditional correlation (DCC) estimated by Gaussian and Student-t copulas for forecasting financial volatility. Time-varying parameters will be estimated for non-parametric dependence by using copula functions with United States stock market data. We compare our model with Kim et al.’s (2016) linear time-varying regression (LTVR) with DCC-GARCH in the ex-post volatility forecast evaluations. Empirical study shows that our proposed volatility models are more efficient than the LTVR model. We also use the superior predictive ability and the reality check for data snooping. Evidence can be found supporting that our proposed model with copula functions provides superior forecasts for volatility over the LTVR model.

-
Previous Post
경영학부 특강 개최(2018.12.04)
-
Next Post
[Research Seminar 2019.01.29]A First Glimpse ..